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While empirical and semi-analytical algorithms that retrieve phytoplankton biomass from satellite ocean color
have matured over the last few decades, the use of Sun-induced chlorophyll fluorescence data measured by
spaceborne sensors remains in its infancy. Sun-induced fluorescence has the potential to provide a synoptic
global view of aspects of phytoplankton biology that go beyond biomass by observing the quantum yield of fluo-
rescence. While several algorithms have been developed to retrieve the quantum yield, they are prone to biases
from different sources. In this study, we assessed the accuracy of several ocean color algorithms to estimate phy-
toplankton chlorophyll or absorption when they are used together with Sun-induced fluorescence algorithms.
Our analysis led us to develop a new type of algorithm for retrieving variability in the quantum yield of fluores-
cence. Based on a three dimensional lookup table, this algorithm avoided many of the biases present in older
algorithms and provided distributions of the quantum yield that showed significant differences compared to
previousmethods. This algorithmic approach also has the advantage of being robust with respect to sensor char-
acteristics and to the set of underlying proxies that are used, namely phytoplankton biomass, the absorption by
chromophoric dissolved organic matter, and the incident irradiance. As such, it would be suitable for merging
data from multiple satellite ocean color sensors.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

As the biomass of phytoplankton in the surface water of the ocean
increases, the color of the water shifts from violet-blue to green-olive.
This shift is caused by the strong absorption of blue wavelengths by
phytoplanktonic cells aswell as their weaker absorption of greenwave-
lengths (Morel, 1988; Yentsch, 1960), thereby reducing the amount of
blue light backscattered out of the ocean to a greater extent than the
green light. These shifts in the hues of water are quantifiable by in situ
or remote measurements of the spectra of light leaving the ocean sur-
face and can be used in algorithms to infer the phytoplankton biomass
(Clarke et al., 1970). Such algorithms were first developed empirically
(see O'Reilly et al., 1998 and references therein) by functionally relating
the ratio of blue-to-green radiance (blue light near 440 or 490 nm;
green light near 550 nm) leaving the ocean surface to the phytoplank-
ton chlorophyll a concentration ([chl], mg chl m3) measured in situ.

Phytoplankton is not the only component in water that influences
the water color or the ratio of blue-to-green radiance leaving the
water surface. Another group of constituents, generally referred to as
chromophoric dissolved organic matter (CDOM), causes a similar effect

because its spectral absorption monotonously increases towards
shorter visiblewavelengths (with high concentrations of CDOM turning
the color of the water to brown). Empirical algorithms have gradually
improved over the years to avoid biased estimates of phytoplankton
biomass that are caused by either CDOM or colored detrital matter
(CDM,which includes both CDOMand non-algal particulates). In recent
versions, this is achieved by shifting the blue bands used in the ratio of
radiance toward longer wavelengths as the color of the water becomes
greener (i.e. the ratio of blue-to-green radiance decreases, c.f., 1998).

In the early to mid-1990s, a new group of ocean color algorithms
was developed (e.g. Carder et al., 1991; Garver and Siegel, 1997;
Roesler and Perry, 1995). These algorithms allow the use of the addi-
tional waveband on SeaWiFS (Sea-viewingWide Field-of-view Sensor)
and subsequent satellite sensors that is located near 412 nm (violet) to
separate the absorption by phytoplankton from the absorption by CDM.
These so called “semi-analytical” algorithms are based on established
relationships (e.g. Gordon et al., 1988;Morel and Prieur, 1977) between
the reflectance of water (or similar quantities) and the total absorption
(a, m−1) and backscattering (bb, m−1) coefficients of water, particles
and dissolved matter within the water. They use the specific spectral
characteristics (explicitly or not) of these constituents to retrieve the
respective absorption and backscattering from the measured reflec-
tance or remotely sensed reflectance. The estimates of phytoplankton
biomass from these algorithms, whether in terms of phytoplankton
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absorption coefficients (aφ, m−1) or chlorophyll a concentration should
not, in principle, be influenced by the presence of CDM in thewater. For
remotely sensed data, this logical conclusion based on basic principles
is hard to validate in practice due to the sparsity of validation datasets
andmeasurement errors in these data. For example, despite having sig-
nificant skill in estimating the absorption by CDOM (IOCCG, 2006;
Siegel et al., 2005), estimates of phytoplankton biomass using semi-
analytical algorithms do not typically show improved statistics when
compared with empirical algorithms on validation datasets (e.g. Siegel
et al., 2005). Three of these algorithms known as the Garver–Siegel–
Maritorena model (GSM, Maritorena et al., 2002), the quasi-analytical
algorithm (QAA, Lee et al., 2002), and the generalized IOP model are
implemented as standard algorithms and their data products are
distributed by the NASA Ocean Biology Processing Group. The latter,
however, remains an experimental product at this stage and will not
be examined in this study.

Outputs from empirical chlorophyll algorithms can be corrected for
biases that arise due to the varying absorption by CDMat a given ratio of
blue-to-green radiance (i.e. departures from the mean trend between
the phytoplankton biomass and the absorption by CDM, Brown et al.,
2008; Lee and Hu, 2006; Morel and Gentili, 2009). Since phytoplankton
absorption increases between 400 and 443 nm whereas that of CDM
decreases within this range, additional information available at the
shorter wavebands (usually between 400 and 412 nm) can be used to
distinguish between these two components (e.g. Morel and Gentili,
2009; Morel and Gordon, 1980). The essence of these approaches to
correct empirical algorithms is to use the departures of measured
reflectance spectra from a statistical “mean spectrum” for the same
blue-to-green ratio. Though original ideas to correct empirical algo-
rithms in this way predate the launch of the first ocean color sensor
(reported later in Morel, 1980; Morel and Gordon, 1980), two such
methods have been introduced recently (Brown et al., 2008; Morel
and Gentili, 2009). The Φ index proposed by Morel and Gentili (2009
referred to as MG09 herein) is a correction for the effects of CDOM on
chlorophyll estimates, when the chlorophyll estimates are obtained by
a globally tuned empirical algorithm; it is currently implemented and
distributed by NASA. The procedure proposed by Brown et al. (2008)
requires further validation before implementation.

The launch of MODIS and MERIS sensors with new spectral bands in
the redwavelengths allowed the observation of Sun-induced chlorophyll
fluorescence (Babin et al., 1996; Gower and Borstad, 2004; Letelier
and Abbott, 1996). Algorithms have been proposed (e.g. Abbott and
Letelier, 1999; Babin et al., 1996) and applied (e.g. Behrenfeld et al.,
2009; Gower et al., 2004; Huot et al., 2005; Morrison and Goodwin,
2010) to interpret this measurement in terms of phytoplankton biomass
or the apparent quantum yield of fluorescence (φf

app, photons emitted
[photons absorbed]−1; the fraction of photons absorbed by phyto-
plankton reemitted as fluorescence). Mostly applicable to oceanic
waters far from coastal influences, these algorithms are generally
based on an analytical function (but see Gower et al., 2004) describing
the radiance leaving the surface originating from fluorescence and a
series of empirical relationships or semi-empirical relationships to
constrain this function.

On the one hand, to use these algorithms the quantum yield of fluo-
rescence must be known or estimated in order to retrieve the phyto-
plankton biomass. In coastal waters, it is difficult to estimate the
chlorophyll concentration by standard ocean color algorithms because
of the presence of significant concentrations of CDOM and non-algal
particulate matter. In some of these waters, Sun-induced fluorescence
could be used to estimate the phytoplankton biomass (e.g. Ahn and
Shanmugam, 2007; Huot et al., 2007; Sathyendranath et al., 2004) by
setting the quantum yield to some known value. In waters with high
concentrations of CDOM or non-algal particulate matter concentration
further difficulties arise in the estimation of the fluorescence radiance,
which complicates the use of Sun-induced fluorescence (e.g. Gilerson
et al., 2007; Ioannou et al., 2009; McKee et al., 2007).

On the other hand, the estimate of φf
app requires precise knowledge

of aφ. More accurate estimates of aφ can be obtained using empirical or
semi-analytical ocean color algorithms in ocean waters far from coastal
influences; these oceanic waters are the sole focus of this article. The
quantum yield can be retrieved in these waters, and it can potentially
provide information about the physiology or the presence of groups of
phytoplankton (the main source of variability in the quantum yield
remains unknown and may vary regionally Behrenfeld et al., 2009;
Letelier et al., 1997;Morrison, 2003; Schallenberg et al., 2008). Accurate
estimates ofφf

app and aφ also require accounting in the algorithm for the
reabsorption offluorescencewithin the cell aswell as the attenuation of
incident spectral irradiance and the upwelling fluorescence radiance
(see below).

In this paper,we focus on two variables: the concentration of chloro-
phyll a (or phytoplankton absorption) and the absorption coefficient of
CDM (aCDOM, m−1), which can either bias or be retrieved by empirical
and semi-analytical ocean color algorithms and Sun-induced fluores-
cence algorithms. With the ultimate goal of improving Sun-induced
fluorescence algorithms to retrieve the quantum yield, we addressed
the following question:What can be learned from Sun-induced fluores-
cence about chlorophyll algorithms and vice versa? In essence, the
approach used to address this question relied on the theory underlying
Sun-induced fluorescence to provide an independent means of statisti-
cally evaluating trends and dispersion observed in semi-analytical and
empirical algorithms. This allowed us to assess the different remote
sensing estimates of phytoplankton absorption required by fluores-
cence algorithms to estimate φf

app. We began by examining two stan-
dard empirical ocean color algorithms (OC2M and OC3M). These
algorithms use respectively two (489 and 547 nm) and three bands
(443, 489 and 547 nm). In the case of the latter, the maximum band
ratio (MBR, unitless) is used as the independent variable and is defined
as the ratio of the highest value of remote sensing reflectance (Rrs, sr−1)
at either 443 nm or 489 nm to Rrs at 547 nm. We then examined the
effect of the correction proposed by Morel and Gentili (2009) on these
algorithms (referred to as the Φ-corrected OC2M and Φ-corrected
OC3M). Since our analysis was improved by accurately correcting the
Sun-induced fluorescence measurement for the incident irradiance,
we also examined the influence of incident irradiance on Sun-induced
fluorescence. These results showed that Sun-induced fluorescence
could be used as a tool to improve semi-analytical algorithms. Finally,
we proposed a new algorithmic approach to measure variability in the
quantum yield of fluorescence using satellite measurements. This algo-
rithm should, in our opinion, supersede algorithms such as Huot et al.
(2005) and others using a similar approach for the analysis of variability
in the quantum yield of fluorescence from satellite remote sensing for
most applications.

2. Background

2.1. Sun-induced emission at the sea surface

Following a few assumptions (e.g. Huot and Babin, 2010; Kishino
et al., 1984; Maritorena et al., 2000; Zhou et al., 2008), the fluorescence
radiance (Lf) just below the sea surface at nadir can be expressed as

Lf ¼
1
4π

aφQ
�
aE
o

PAR 0−ð Þ 1

K
τf
abs þ af

; ð1Þ

whereQa⁎ (unitless) is the fraction of fluorescence leaving the cell with-

out being reabsorbed,E
o

PAR 0−ð Þ is the scalar photosynthetically available
irradiance (PAR, irradiance integrated spectrally between 400 and

700 nm, μmol m−2 s−1) just below the surface, K
τf
abs (m−1) is the

attenuation of scalar irradiance within the uppermost part of the
water column where fluorescence radiance originates, and af (m−1) is
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the absorption coefficient for upwelling radiance within the fluores-
cence band.

In case 1 water (defined in Morel and Prieur, 1977) far from ter-
restrial influences, relationships have been developed between the
phytoplankton abundance estimated in terms of chlorophyll and the
following variables (Huot et al., 2005 and references therein): aφ, Qa

⁎,
and Kτf

abs. These relationships represent mean trends, but a significant
amount of variability around these trends is observed due to the vari-
able nature of the species composition and physiology of phytoplankton
at a given chlorophyll concentration. In addition,Kτf

abs is essentially a dif-
fuse attenuation coefficientweighted by phytoplankton absorption, and
variability can arise from other absorbing components, in particular
CDM. Aswith any diffuse attenuation coefficient,Kτf

abs is directly propor-
tional to the total absorption coefficient (e.g. Gordon, 1989). The influ-
ence of the colored components is much less important in the case of
af because of the overwhelming influence of water absorption in the
fluorescence band for most oceanic waters. It is also important to
note that, despite a significant amount of variability in case 1 waters,
general trends exist between phytoplankton biomass and absorption
by CDOM (Morel, 2009; Morel and Gentili, 2009) and CDM (Siegel
et al., 2005). Noting that CDOM absorption is the dominant fraction
of CDM absorption (Siegel et al., 2002) in case 1 waters, we will
mostly ignore the distinction between the two in what follows.
However, we will try to acknowledge throughout this paper where
different algorithms were meant to estimate CDOM (MG09) or
CDM (GSM and QAA, see below for definitions of these algorithms)
and we will thus use both abbreviations. Because we focus on case
1 waters with limited terrestrial influences, we will ignore the
potential effect of high scattering by non-algal particulates which
can influence the retrieval of fluorescence radiance (Gilerson et al.,
2007; McKee et al., 2007).

2.2. Influences on and potential biases in estimates of the quantum yield

2.2.1. Phytoplankton biomass
Using Eq. (1) and solving for φf

app requires estimating all of the
other variables. In the case of phytoplankton biomass, this is done
either in terms of [chl] or aφ by direct application of an algorithm on
measurements of upwelling radiance. When [chl] is retrieved, the
relationship aφ=[chl]aφ⁎ is used, where aφ⁎ (m2 mg chl−1) is the
chlorophyll specific absorption of phytoplankton. For the other vari-
ables (including aφ⁎), the empirical relationships mentioned above
are used. In the ocean, the variable that varies the most – by 3 orders
of magnitude – is the phytoplankton biomass. Errors in the estimate
of the chlorophyll concentration or the phytoplankton absorption
propagate directly (see Eq. (1)) to estimates of φf

app. The quantum
yield of fluorescence at the surface appears to vary at most by about a
factor of 10, and possibly less, under remote sensing conditions (Huot
et al., 2005; Maritorena et al., 2000; Morrison, 2003; Morrison and
Goodwin, 2010; Ostrowska et al., 1997; Schallenberg et al., 2008). Any
biases in the estimates of [chl] could thus lead to important biases in
the retrieval of φf

app.

2.2.2. Influence of CDM in case 1 waters
The direct influence of CDM on chlorophyll fluorescence radiance

leaving the sea surface originates from its effect on Kτf
abs. An indirect

influence on the retrieval of φf
app using ocean color algorithms can

also originate from biased estimates of the phytoplankton biomass.
With empirical algorithms, the presence of a higher than normal
CDM concentration, for a given blue-to-green ratio, will lead to an
overestimate of [chl] or aφ. When applying Eq. (1), this will lead to
an underestimate of φf

app. Similarly, with these algorithms an under-
estimate of the phytoplankton absorption due to a lower than average
CDM concentration will lead to an overestimate of φf

app.

3. Data and statistics

3.1. Satellite datasets

We downloaded MODIS Aqua mapped daily Level-3 data products
(reprocessing 2009.1) at 4 km spatial resolution from the NASA ocean
color website (http://oceancolor.gsfc.nasa.gov) for each day of 2007.
This dataset included the following data products: the chlorophyll con-
centration (mg chl m−3) from both the OC3M-547 algorithm (herein
referred to as OC3M, http://oceancolor.gsfc.nasa.gov/REPROCESSING/
R2009/ocv6/) and the GSM algorithm (GSM, Maritorena et al., 2002);
the phytoplankton absorption coefficient at 443 nm (m−1) from the
QAA algorithm (QAA, Lee et al., 2002); the Φ index (dimensionless;
the chromophoric dissolved organic matter index product, Morel and
Gentili, 2009); the absorption by CDM from the QAA and GSM algo-
rithms (aCDOM(443), to simplify the notation we use the subscript
“CDOM” for both the CDM and CDOM absorption estimates); the
calculated planar photosynthetically available radiation (EdPAR(0+),
converted to μmol m−2 s−1) just above the water surface at the time
of the image (distributed by NASA as the iPAR product); the fluores-
cence line height extracted from the normalized water leaving radiance
(the nFLH product, as per Behrenfeld et al., 2009); and the remote
sensing reflectances (Rrs(λ), sr−1) at 412, 443, 488, 547 and 667 nm.
From these reflectances, the chlorophyll estimates from the OC2M
algorithm (herein referred to as OC2M) were computed following the
equations provided at (http://oceancolor.gsfc.nasa.gov/REPROCESSING/
R2009/ocv6/).

The data used herein are slightly different from previous studies.
Before our study, in the standard NASA production of Level-3 nFLH
products, all negative nFLH retrievals were set to zero prior to com-
puting the Level-3 mean. Since these negative retrievals were found
to represent an increasing fraction of the pixels with decreasing chlo-
rophyll and did not appear to depart from the normal distribution of
the data, we believe these values are valid and probably result from
noise in the sensor. We thus reprocessd all Level-3 nFLH scenes to in-
clude the negative values in the averages except above 1 mg chl m−3

where they are clearly outliers. The effect of this change is seen only
below about 0.1 mg chl m−3, where it, however, significantly changes
the relationship between nFLH and chlorophyll concentration. It is
also important to note that the current iPAR product distributed by
NASA is not the product described in the original iPAR algorithm theo-
retical basis document (Carder et al., 2003). Rather, it is derived by inte-
gration of the product of extraterrestrial solar irradiance (Thuillier et al.,
2003) atmospheric transmittance(Ahmad et al., 2007; Gordon and
Wang, 1994), and the cosine of the solar zenith angle. The integration
is performed over the spectral range from 400 to 700 nmat 1 nm inter-
vals. The atmospheric transmittance is determined at each sensor band
during the atmospheric correction process, and then interpolated to
1 nm increments for the integration. A major difference (discussed
later) compared with the previous iPAR algorithm is that EdPAR(0+) is
computed above the surface.

Amatrix of 56,963,511 lines (pixels) and 13 columns (data products)
was obtained by randomly sampling each of the 365 daily Level-3 sets of
global images. The random selection of pixels was weighted in the fol-
lowing manner to avoid observational biases (e.g. clouds, masked data)
and to obtain a dataset thatwas as evenly spatially distributed as possible
(high latitude seasonal biases were unavoidable). For all daily images
during 2007, a probability map of not observing a pixel was calculated
as Nnotobs/Ntot, where Nnotobs is the number of masked pixels observed
during the year and Ntot=365 is the total number of times this pixel
was present in the dataset.When loading each image, amatrix of random
numbers (uniformly distributed between 0 and 1) was created that was
the same size as the image. A pixel was selected if the random number
was smaller than the value on the probability map for the same pixel.

We applied the following cut-off to the dataset to exclude outliers
and aberrant data: all physical limits (except for nFLH) had to have
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values greater than 0 and theΦ-index had to be smaller than 7 (thereby
excluding waters with excessively strong coastal influences). Further-
more, we discarded pixels that differed by more than 0.3% between
the chlorophyll concentration computed by applying the OC3M algo-
rithm directly to the downloaded Level-3 remote sensing reflectances
and the chlorophyll concentration from the same products distributed
by NASA but derived from the Level-2 products and then averaged
to obtain Level-3. These quality control measures left a total of
47,030,638 pixels. All analyses, except when we applied our algorithm
to new images, were carried out on data from this matrix.

3.2. SeaBASS dataset

From the SeaBASS (SeaWiFS Bio-optical Archive and Storage System)
archive (http://seabass.gsfc.nasa.gov/), we downloaded the chlorophyll
concentration measured in situ and the matchup nFLH product (a total
of 510 points) from the MODIS Aqua sensor.

3.3. Statistics

To provide an estimate of the variability present in the relationship
between different estimates of chlorophyll and nFLHwe computed the
median trend line and compute the relative median absolute deviation
(RMAD Rousseeuw and Croux, 1993) from this trend line as:

RMAD ¼ 100�med nFLHi−mednFLH chli½ �ð Þf g=mednFLH chli½ �ð Þj j ð2Þ

where “med” represents the “median value of” andmednFLH([chli]) is the
median trendline evaluated at the ith nFLH point nFLHi. RMAD can be
interpreted as the relative difference from the trend line within which
50% of the points fall. It is akin to a mean absolute percent error but
more robust to outliers.

4. Results

4.1. The OC2M algorithm as a benchmark

The relationship between nFLH and the chlorophyll estimated
from the OC2M algorithm (Fig. 1) was used as a benchmark against

which we evaluated other algorithms to estimate the chlorophyll
concentration. For several of the following plots, median values
(black dots) and mean values (black X's) were computed for 70
equally spaced (in log space) bins throughout the range of the mea-
sured chlorophyll values. This approach using the median values
was selected because it provided a better representation of the
trend compared to a standard nonlinear fitting approach due to the
non-normal distribution of the residuals. Robust fitting procedures
provided very similar results depending on the tuning parameters
that were used. However, the median approach provided a more ob-
jective and general approach as we progressed with the analysis. Data
from the SeaBASS matchup dataset (scattered gray points) as well as
a scaled theoretical line (magenta) from the model of Huot et al.
(2005) are superimposed on Fig. 1.

Fig. 1 shows that the theoretical model is very similar to the mean
and median values between 0.1b [chl]b3 mg chl m−3. Above and,
below this range the trends depart significantly from the theoretical
model. Near 0.1 mg chl m−3, the data show a rapid decrease with
chlorophyll and then a much lower slope than is expected theoreti-
cally. This is significant because, based on the dataset used here,
around 45% of the ocean surface has a chlorophyll concentration
below 0.1 mg chl m−3 (see also Antoine et al., 2005). Above
3 mg chl m−3, the departure from the theoretical model is of much
less concern because the areal fraction of the ocean with a surface
chlorophyll concentration above this value is approximately 6%. How-
ever, the departure is much greater in this region. The magenta line of
the theoretical model passes approximately through the center of the
points from the SeaBASS matchup dataset despite significant variabil-
ity, especially at low chlorophyll concentrations. For [chl] above
3 mg chl m−3, the departure of the median (and mean) trend from
the theoretical line can be attributed almost certainly to biases in
the remote estimates of chlorophyll because the chlorophyll values
measured in situ are not biased by remote sensing artifacts; this fol-
lows logically since the median line also departs from the match-up
dataset while the theoretical line goes through the center of the
points. The large variability in the match-up dataset at low chloro-
phyll concentrations does not allow any such interpretation.

The lines formed by themedian andmean points represent, in addi-
tion to the effect of biomass, the average change of several optical and

Fig. 1. Relationship between the nFLH data product measuring chlorophyll fluorescence at the sea surface and the chlorophyll concentration obtained from the OC2M ocean color
algorithm. Black filled circles represent the median of the data falling within equally spaced bins of chlorophyll values extending from half the distance to and from the two adjoin-
ing points. The black X's represent the mean of the data for the same interval. The dashed lines represent the median±the interquartile range. The magenta line is the scaled the-
oretical model of Huot et al. (2005) for the relationship between nFLH and [chl] scaled such that it matches the median value of nFLH at 0.5 mg chl m−3. The gray points are from the
SeaBASS validation dataset for the MODIS AQUA sensor (http://seabass.gsfc.nasa.gov/, accessed 28/10/2010). Colors represent the logarithm in base 10 of the number of points (N)
within a bin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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physiological parameters. It accounts (see Eq. (1)) for trophic changes
in (Babin et al., 1996; Huot et al., 2005): φf

app (including the effect of
photoprotective pigments), Qa⁎, aφ⁎, K

τf
abs, af, as well as potential biases

in the estimate of the baseline (Huot et al., 2005; Ioannou et al.,
2009). Indeed, it could be seen as an “improved” representation of the
“theoretical” trendline from Huot et al. (2005) that includes observa-
tional biases as well as trophic changes in φf

app. To obtain the quantum
yield, most recent algorithms divide the fluorescence data by the value
of some variant of this theoretical (unscaled) trendline. Therefore, any
systematic departure from this trendline will translate into systematic
changes in the quantum yield, which, in the case of chlorophyll-based
algorithms would be dependent on the chlorophyll concentration. The
variability in nFLH not accounted for by the trendline originates from:
measurement errors in both chlorophyll and nFLH (including biases
caused by CDM); departures of the optical characteristics of the water
at a given band ratio (arising, for example, from the departure of CDM
from the mean relationship); and variability in φf

app. Improving the re-
trieval of the latter requires reducing the errors in the estimates of the
others. In that sense, in a global context, a trendline such as the mean
or median in Fig. 1 provides an attractive alternative to the theoretical
model as it can account for some of the biases present (e.g. non-zero
values of nFLH at [chl]=0). However, other biases such as those caused
by CDOMmust be removed from this trendline.

The most obvious source of variability in φf
app is the incident irradi-

ance, which at high values (relative to the mean growth irradiance)
leads to a decrease in the fluorescence quantum yield caused by
non-photochemical quenching (e.g. Krause and Jahns, 2004). Such a
decrease is clearly observed when the ratio of the data in Fig. 1 to the
median line (i.e. εchl=nFLH/median trendline, unitless) is plotted
against the photosynthetically active incident planar irradiance just
above the sea surface EdPAR(0+) (Fig. 2). The trend for most of the
range of EdPAR(0+) values decreases from a value of εchl of about 1.70
at 600 μmol m−2 s−1 to a value of 0.82 at 2000 μmol m−2 s−1. Beyond
2000 μmol photons m−2 s−1, there is a rapid and unexplained (it is
not investigated in this study) rise in εchl. Superimposed on the median
of this relationship (black points) is a power law best fit curve (gray)
and the theoretical relationship (blue line) used by Behrenfeld et al.
(2009); evidently, these curves are similar. It must, however, be kept
in mind that while the trend observed in εchl with EdPAR(0+) is consis-
tent with non-photochemical quenching it is not the only possible
source of this trend as other variables in Eq. (1) and remote sensing
biases could covary with incident irradiance.

The general trend with EdPAR(0+), however, when examined more
closely, varies as a function of the trophic state of the ocean. This is
highlighted in panels D and E of Fig. 2 where the same graph as for
panel A is shown, but only for the data falling between 0.1 and
0.15 mg chl m−3 in panel D and 1.0 to 1.5 mg chl m−3 in panel E.
The variation with EdPAR(0+) is stronger at the lower chlorophyll con-
centrations. Median values of εchl (such as those presented in panels D
and E) can be computed for small intervals of chlorophyll and
EdPAR(0+); applying this computation provided a more general repre-
sentation of the variability in the median nFLH values as a function of
EdPAR(0+) (panel F). This figure highlights significant trends with
incident irradiance in εchl which are at least partly originating from
changes in φf

app. This is particularly obvious below ~0.1 mg chl m−3,
although interpretations at these [chl] must be made with extreme
care (see Appendix 2). Above approximately 2 mg chl m−3, no obvious
trends with irradiance are apparent and the median values become
more noisy (panel F).

The other source of variability that can be examined using this
dataset originates from variability in CDM absorption at a given phyto-
plankton absorption. As mentioned previously, in case 1 waters, the
consequence of such variability on the fluorescence estimates is
twofold. Firstly, due to its influence on the ratios used in empirical algo-
rithms, it biases the estimates of phytoplankton biomass that are used
to normalize the fluorescence measurement to obtain φf

app. Secondly,

at sufficiently high CDM concentrations, it affects Kτf
abs and thus

decreases the fluorescence emission simply by a decrease of the irradi-
ance present in the water. The second effect can be readily modeled for
various CDOM absorptions by calculating the ratio (γCDOM, unitless)

γCDOM ¼
K

τf
abs þ af = cos θ′

� �
ΔCDOMK

τf
absþΔCDOMaf = cos θ′

� �
:

ð3Þ

where K
τf
abs and af are values for mean CDOM concentrations at a given

chlorophyll concentration in the ocean, and ΔCDOMK
τf
abs and

ΔCDOMaf are
the same variables but with more or less CDOM than the average. This
ratio provides the relative increase or decrease in the expected fluores-
cence radiance due only to the addition or removal of CDOM from
the mean CDOM concentration (in this case at a given chlorophyll
concentration). Practical details of the approach used to model this
ratio are given inAppendix 1. This simplemodel (magenta area) is com-
pared (Fig. 3) with the ratio of the data shown in Fig. 2A by the surface
in Fig. 2. F for different intervals of the chlorophyll concentration (see
text within each panel). This ratio is referred to as εchl,ipar. The con-
siderable amount of variability makes it difficult to see the match;
however, the median line clearly illustrates that the trends caused
by changes in CDOM absorption were much stronger in the observa-
tions (black line) than the theory (magenta area) would allow. By
far, the most probable reason for such an observation is an underes-
timate of the chlorophyll concentration at lower values of CDOM ab-
sorption (than the mean trend with chlorophyll) and overestimates
at higher CDOM absorptions values. In other words, unsurprisingly,
the OC2M algorithm cannot correctly separate CDOM from chloro-
phyll and this is reflected in biases in the estimates of [chl]. Another
indirect effect of CDOM that has not been mentioned is the potential
change in φf

app arising from a reduced irradiance resulting from a
change in the attenuation coefficient. In this case, we expect (i.e. as
observed in Fig. 2) an increase in φf

app when the irradiance decreases
(i.e. the attenuation coefficient increases). We assessed this effect
using the result from Fig. 2 and Eq. (1) and found that the effect
was small at most a 10% increase in fluorescence emission at very
high CDOM, but generally much less (~1% at CDOM absorption
values present in case 1 waters). We thus ignored this potential ef-
fect in the remainder of the paper but note that it was inherently
accounted for in the new algorithm developed in Section 4.3.

4.2. Comparison with other algorithms

Other algorithms, whether empirical corrections to OC2M or semi-
empirical algorithms, were evaluated by comparison with the results
presented above. Five such algorithms are shown in Fig. 4. In panel A,
the Φ-corrected OC2M chlorophyll estimates (using the Morel and
Gentili, 2009, equation in the legend of their Fig. 9) show an improved
match to the theoretical curve. There is also a reduced dispersion as
reflected by the reduced RMAD compared to OC2M (column 2 of
Table 1). It is important to recall (see Data and statistics) that the
RMAD is calculatedwith respect to themedian line and not the theoret-
ical data. It thus provides a mesure of disperson around the median
trend and not a measure of the match to the theoretical model. The
OC3M algorithm (panel B) has a slightly greater departure similar to
the OC2M algorithm at high chlorophyll values (both algorithms use
the same reflectance ratio in this region), but it shows a similar relation-
ship at low chlorophyll concentrations (continuously decreasing values
that are more in accordance with theoretical expectations). Applying
the Φ correction to the OC3M algorithm leads to an overall improve-
ment of the fit to the theoretical line, except around 0.1 mg chl m−3,
and leads to the lowest RMAD (column 2 of Table 1) of all the empirical
algorithms tested. In panel D, nFLH versus the chlorophyll estimates
from the GSM algorithm closely follow the trend of the theoretical
model at high chlorophyll but shows, like the Φ-corrected OC3M, an
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underestimate at low chlorophyll concentrations (see Discussion for a
possible theoretical explanation). The GSM algorithm (see column 2
of Table 1), leads to the lowest RMAD of all the algorithms compared
in this study. The estimates from the QAA algorithm (Fig. 4E) also im-
prove the match to the theoretical model and reduced the RMAD com-
pared to the OC2M algorithm, although the upper range does not seem
to be as good as the GSM algorithm.

We do not show a systematic comparison of the trend with
EdPAR(0+) as all models showed similar results to the OC2M algorithm
(see Fig. 2), albeit with a slightly lower standard deviation of the resid-
uals for these algorithms (see column 3 of Table 1 for the statistics). The
exponent of the power law's best fit line for each model was always
higher (column 5 of Table 1) for the other algorithms compared with
OC2M, bringing them closer, although always lower, to the relationship
used by Behrenfeld et al. (2009). In the following analyses where we
examined the effect of CDM, a model-specific correction for EdPAR(0+)
was applied to each model using a surface derived from an analysis
equivalent to that carried out in Fig. 2E but for the ratio from their
respective chlorophyll or phytoplankton absorption estimates.

Figs. 5 and 6 present a comparison of the trends of εchl,ipar for four
of the algorithms presented in Fig. 4 (Φ-corrected OC2M, Φ-corrected
OC3M, GSM and QAA) with respect to the CDOM absorption. These
figures can be compared to Fig. 3. Although not presented here, the
results from the OC3M algorithm qualitatively resembled those from
the OC2M algorithm. Applying the Φ correction to the OC2M and
OC3M algorithms (Fig. 5) strongly reduced the deviations from the
model observed in Fig. 3.

The same analysis for the GSM algorithm provided unexpected
results. The adherence to the modeled trends was improved relative
to Fig. 3 when the CDOM absorption was calculated using the MG09
method (not shown). However, when CDM was calculated using the
GSM algorithm (left panels of Fig. 6), strong departures were observed
from the theoretical line. The QAA algorithm was an intermediate case
where improvement relative to the OC2M case was seen for both the
MG09 CDOM algorithm (not shown) and the QAA estimates (right
panels of Fig. 6). Explaining the results regarding the retrieval of
aCDOM(443) with the semi-analytical algorithms was beyond the scope
of our study. However, our analysis showed that Sun-induced fluores-
cence can be used as a general guide to improve ocean color algorithms
to retrieve phytoplankton absorption or chlorophyll. Indeed the two
analyses presented above allow comparing different versions of an al-
gorithm or different algorithms on a large dataset. This can be done as
in Fig. 1 by comparing the dispersion around the mean or median
trendline of the data (as shown in Table 1) or by carrying out an analysis
similar to that in Fig. 3 to examine the effect of biases caused by CDOM
on the retrieval of chlorophyll. Finally, it should be noted that the signif-
icant variability captured by the CDM variable derived from the
semi-analytical algorithms in the present study (even though it proba-
bly contains some biases) implies that it was retrieving an optical signal
(likely linked to absorption) that causes important trends in nFLH.

4.3. A new algorithm for studying variability in the quantum yield of
fluorescence

Given the results above, we developed a new approach based on the
maximum band ratio that underlies the OC3M algorithm and a CDM
correction (similar to that obtained by applying the Φ index). This ap-
proach appeared to provide one of the best foundations for developing
a new algorithm. Although an approach based on theMBR had a slightly
higher RMAD of the estimates (see column 4 of Table 1), after applying
the chlorophyll and EdPAR(0+) dependency of nFLH, the results were
closer to those expected compared to semi-analytical models with
respect to aCDOM(443).

Given the nonlinear and complex relationships between nFLH, chlo-
rophyll, EdPAR(0+), and aCDOM(443), our approach included a three
dimensional lookup table (LUT) that “slices” the nFLH into portions

Fig. 3. Ratio calculated bydividing ɛchl by themedian of ɛchl (obtained by interpolating the
surface in Fig. 2F) plotted against the CDOM concentration (obtained by applying the
algorithm in Morel and Gentili, 2009). Black line, density, and colors are the same as for
Fig. 1. Themagenta region represents the theoretical effect of CDOMon the measurement
of fluorescence if the data were only affected by the effect of CDOM on the propagation of
irradiance in the ocean (see Appendix 1 and Section 4.3 for details).

Fig. 2. A) Logarithm of the ratio (in normal space) of the nFLH data to the trendline for the median data in Fig. 1 plotted against the PAR irradiance just above the sea surface (EdPAR(0+)
from the iPARdata product). The blue line is the relationship usedbyBehrenfeld et al. (2009) and the gray line is the bestfit for themedian points (blackpoints, ɛchl=80.6EdPAR(0+)−0.61).
B) Distribution of EdPAR(0+). C) Distribution of ɛchl, where σ represents the standard deviation. D) Same as panel A but only for points between 0.1 and 0.15 mg chl m−3. The gray line is
reproduced from panel A. E) Same as panel D but for points between 0.5 and 0.6 mg chl m−3. F) Surface of the median of ɛchl (colorbar scale) as it varies with EdPAR(0+) and [chl]. This
surface is used as a two dimensional LUT in the analysis of the effect of CDOM (see Fig. 3).We assigned a ɛchl value (color) only to bins that had at least 50 points. Negative data and values
below−1 are all pooled together for graphing purposes on the first horizontal bin in panels A, C, D and E. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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that were greater and lower than amedian ocean pixel for a given com-
bination of [chl], EdPAR(0+) and aCDOM(443). This approach, using three
dimensions instead of one, was akin to that used by Brown et al.
(2008) to study the sources of variability in ocean color. The axes
chosen to represent chlorophyll and CDM were inspired by those pro-
posed by Morel and Gentili (2009) for their Φ correction: one axis
was MBR, the measure of phytoplankton absorption (replacing the
ratio of Rrs(489) to Rrs(555) ratio in MG09); another axis was the ratio
of Rrs(412) to Rrs(443) (443412Rrs), the measure of CDM; and the last axis
was EdPAR(0+), which is the output from the NASA iPAR algorithm.
Using these axes, we obtained a lookup table of the median value of
nFLH (nFLHLUT, mW cm−2 sr−1 μm−1) within each cube on a three di-
mensional grid (see Fig. 7). Using this LUT, for any pixel the value of
nFLHLUT could be computed by interpolating the LUT and the nFLH
value measured from that pixel was divided by nFLHLUT. We thus
obtained a new fluorescence number, χfluo, as:

χfluo ¼ nFLH=nFLHLUT ð4Þ

We developed, in parallel, a series of LUT-based algorithms with
three inputs ([chl] or aφ, aCDOM(443) and EdPAR(0+)) using all of the
algorithms tested here, as well as a few combinations of CDM and chlo-
rophyll estimates from different algorithms (see column 4 of Table 1).
The lowest RMAD of the estimates was obtained with the GSM outputs.
Applying a LUT based on the GSM algorithm or the LUT based on the
MBR described above provided visually nearly identical fields of χfluo

(see Fig. 8, described below). We thus kept the simpler approach
based on the MBR because of the unexplained results with respect to
CDOM when using the GSM and because it did not, except for the
iPAR algorithm, rely on the output of a specific algorithm (considering
that algorithms may undergo modifications over time).

Table 1
Relative median absolute deviation (RMAD) between the different relationships
representing the median trend in the nFLH data and the nFLH data (columns 2 to 4)
as well as the average dependence of nFLH on irradiance (column 5).

Algorithms
(chl; CDOM)a

[chl]b

chl>0.1,
all chl

EdPAR(0+)c

chl>0.1,
all chl

LUTd

chl>0.1,
all chl

EdPAR(0+)e

“slope”
chl>0.1,
all chl

OC2M; MG09 43.3, 53.6 40.7, 51.8 37.4, 49.1 −0.57, −0.64
Φ-corrected OC2M; MG09 42.1, 52.7 38.4, 50.4 37.3, 49.2 −0.63, −0.68
OC3M; MG09 43.7, 53.8 40.8, 51.9 36.0, 47.9 −0.67, −0.72
OC3M; GSM " " 36.0, 47.9 "
OC3M; QAA " " 36.6, 48.5 "
Φ -corrected OC3M; MG09 41.5, 52.5 37.3, 49.8 36.1, 48.2 −0.74, −0.77
Φ-corrected OC3M; GSM " " 36.4, 48.6 "
Φ-corrected OC3M; QAA " " 36.2, 48.4 "
GSM; MG09 39.9, 50.9 36.4, 49.0 34.9, 46.9 −0.72, −0.74
GSM; GSM " " 34.7, 46.6 "
GSM; QAA " " 34.8, 46.8 "
QAA; MG09 41.9, 52.1 37.1, 49.6 36.0, 48.0 −0.79, −0.83
QAA; GSM " " 35.9, 48.0 "
QAA; QAA " " 36.0, 48.1 "
MBR; 412/443 43.7, 53.8 40.7, 51.8 35.9, 48.0 −0.67, −0.72

a Algorithms used to compute the chlorophyll concentration and CDOM absorption
at 443 nm.

b RMAD of the nFLH from the median trendline as a function of [chl]. The two numbers
represent the RMAD value for [chl] greater than 0.1 and for all [chl] To have the same
points for all algorithms, theΦ-corrected OC3Malgorithmwas used to identify the points.

c RMAD of the εchl,ipar from the surface representing the εchl,ipar as a function of [chl] and
EdPAR(0+). For thefirst row this is equivalent to estimating the RMADbetween the point in
Fig. 2A and the surface in Fig. 2F at their respective [chl] and EdPAR(0+) values.

d RMAD of the nFLH from the look-up table estimate of nFLHLUT. See point b above for
details.

e Exponent of the power law dependence of nFLH on EdPAR(0+) after removing the
dependence on chlorophyll. For the first row, this is the power law exponent of the gray
line in Fig. 2A.

Fig. 4. Panels are the same as for Fig. 1 but for: A)Φ-correctedOC2M; B)OC3Malgorithm;
C)Φ-corrected OC3M; D) GSM algorithm; and E) QAA algorithm.
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We also examined the possibility of includingmeasures of backscat-
tering (Rrs(547), Rrs(667), as well as the backscattering coefficient re-
trieved by the QAA and GSM algorithms) as a fourth dimension in our
LUT because high values are known to impact the chlorophyll retrieval
(Balch et al., 2005; Brown et al., 2008; Claustre et al., 2002). This was
shown to have only a modest impact within restricted regions of high
backscattering, for the sake of simplicity we kept a three dimensional
LUT because it was a more convenient and computationally efficient
solution.

4.4. Applying the algorithm to a global dataset

We applied our χfluo algorithm using daily Level-3 data for the
month of March 2007 and binned the data into a monthly composite
(Fig. 8A). Patterns observed often reflect oceanic areas with similar bio-
physical characteristics of chlorophyll concentration (Fig. 8D), incident
irradiance (Fig. 8E), and sea surface temperature (Fig. 8F). Fig. 8B shows
the application of a three dimensional LUT-based algorithm to the same
dataset but using GSM chlorophyll and CDM estimates as inputs in
addition to EdPAR(0+). Differences between these two panels are very
small andwould not lead to different interpretations for the vastmajor-
ity of the ocean. Panel C on the same figure shows the result of applying

the NPQ-corrected ϕsat algorithm of Behrenfeld et al. (2009); this com-
posite was created using Level-3 ocean color data and the color scheme
was chosen to match the original publication. The spatial distributions
are different for this algorithm compared to our algorithm. Low chloro-
phyll areas (see Fig. 8D) tend to showhigher quantum yields of fluores-
cence (wedid not apply any offset to the data or removenegative values
as such differences are expected in the low [chl] compared to the origi-
nal work). This trend is not observed in our approach because, by
design, half of the low chlorophyll waters must show lower than aver-
age (median) χfluo and the other half higher than average χfluo. Outside
low chlorophyll areas (which are problematic in any case; we shaded
these areas in our maps to reflect this potential problem), differences
also appear (see for example the Benguela upwelling and the Southern
Ocean). Such differences likely originate from the effect of the
EdPAR(0+), CDOM, and [chl] dependencies used. The approach devel-
oped in this study attempted to empirically remove these biases. The
other source of disparity between the outputs may be inherent to the
design of these algorithms. Algorithms based on formulations such as
that of Behrenfeld et al. (2009) should in principle (i.e. a theoretically
unbiased algorithm) allow the average trend in the quantum yield to
be observed as it changes with trophic state. This is not possible with
the χfluo algorithm as this trend is included in the LUT. Therefore, the

Fig. 5. Panels are the same as for Fig. 3 but for the left panels the chlorophyll was estimated using the Φ-corrected OC2M algorithm to create a surface equivalent to Fig. 2F. For the
right panels, the chlorophyll was estimated using the Φ-corrected OC3M to create the surface.
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present algorithm can only observe differenceswith respect to the aver-
age (median) value for a given trophic state. Whatever the sources of
these disparities are, the interpretations of the distributions observed
in panels A and C would be different.

4.5. Interpretation of χfluo (and other quantum yield algorithms)

We can represent the nFLH measured by remote sensing as

nFLHrs aφ; acdm; EdPAR
� �

¼ ñFLH aφ;rs; acdm;rs; EdPAR;rs
� �

γnFLH ð5Þ

where nFLHrs(aφ,acdm,EdPAR) is the nFLH measured by remote sensing

at a given in situ aφ,aCDOM and EdPAR, ñFLH aφ;rs; acdm;rs; EdPAR;rs
� �

is the

median nFLH in the ocean for the remotely sensed aφ, aCDOM and
EdPAR (denoted by the “rs” subscript in the equation) and γnFLH is a

multiplication factor equal to the ratio nFLHrs aφ; acdm; EdPAR
� �.

ñFLH

aφ;rs; acdm;rs; EdPAR;rs
� �

. This equation forms the basis of the χfluo

index as comparison with Eq. (4) shows that: χfluo=γnFLH,nFLH=

nFLHrs(aφ,acdm,EdPAR) and nFLHLUT ¼ ñFLH aφ;rs; acdm;rs; EdPAR;rs
� �

. This

representation, however, highlights that γnFLH (orχfluo)will incorporate

the effect of biases in the remote sensing estimates of aφ, aCDOM and
EdPAR relative to the in situ values in addition to variability in the quan-
tum yield that we want to observe (see below).

Using Eq. (1) and assuming that the optical effect of EdPAR is removed
byusingnFLH as a proxyof Lf,we can thenuse the same logic as above and
write:

nFLHrs aφ; acdm; EdPAR
� �

¼ cte⋅aφQ
�
aφ

app
f

1

K
τf
abs þ af

" #

¼ cte⋅ãφ;rsγa⋅ Q̃
�
a;rsγQ ⋅φ

app
f ;rsγφ⋅
˜

1

K
τf
abs þ af

" #
rs

γKþa

¼ cte⋅ãφ;rs Q̃
�
a;rs φ̃

app
f ;rs

˜
1

K
τf
abs þ af

" #
rs

0
@

1
AγaγQγφγKþa

ð6Þ
where ãφ;rs ; Q̃

�
a;rs ; φ̃

app
f ;rs and
˜

1

K
τf
abs þ af

" #
rs

are the median values of the

variables aφ,Qa
⁎,φf

app and
1

K
τf
abs þ af

" #
respectively at the median nFLH

(nFLHLUT) for the MBR, 443412Rrs and iPAR obtained by remote sensing for a

Fig. 6. Panels are the same as for Fig. 3, except that for the left panels the GSM chlorophyll and CDM estimates were used. For the right panels, the QAA chlorophyll and CDM
estimates were used. For the latter, the table provided by A. Bricaud (from Bricaud et al., 2004) for the chlorophyll specific absorption coefficient of phytoplankton was used.

247Y. Huot et al. / Remote Sensing of Environment 132 (2013) 238–253



Author's personal copy

given value of in situ aφ,acdm and EdPAR; and where γa ¼ aφ=ãφ;rs ,

γQ ¼ Q �
a=Q̃

�
a;rs , γφ=φf

app/φ̃app
f ;rs and γKþa ¼

1

K
τf
abs þ af

" #,
˜1

K
τf
abs þ af

" #
rs

.

The gammas represent the ratio of the in situ value of a variable to that
a median value in the LUT under the remotely estimated proxy of aφ,
aCDOM and EdPAR that are MBR, 443

412Rrs and EdPAR. By comparison of
Eqs. (4), (5) and (6), we see that χfluo=γnFLH=γaγQγφγK+a. As such,
χfluo is the product of the ratios of all the variables affecting
Sun-induced fluorescence to their median value in the ocean for the
same combination of MBR, 443412Rrs and iPAR. Therefore, χfluo (and indeed
any other estimate of the quantum yield of fluorescence) will represent
variability in the quantum yield when γa, γQ and γK+a are as close as
possible to 1 for all remote sensing conditions. Note that, to simplify this
demonstration, we said that 443412Rrswas ameasure of acdm, when in reality
it is 443

412Rrs at a given MBR that allows an estimate of acdm (Morel and
Gentili, 2009).

5. Discussion

When examining Figs. 1, 2 and 3, one way to evaluate the quality
of the retrievals was that the trendlines (median values) followed the
theoretical relationship. This theoretical relationship was based on
several assumptions. Four of the most uncertain were: 1) that the
optical relationships used to describe the mean trend in the ocean
were correct, 2) that the apparent quantum yield remained constant
with the trophic state, 3) that nFLH based on a baseline to extract
the fluorescence radiance was not biased with respect to the trophic
state of the ocean, and 4) that the nFLH could be measured even at
the lowest chlorophyll concentration. All of these assumptions could
have been incorrect to some degree. In the case of assumptions 1
and 2, it was unlikely that the departures from the assumed constant
quantum yield or case 1 water relationships (which were shown to
be internally consistent, Morel, 2009) could lead to the shape of the
nFLH vs chlorophyll relationship at low chlorophyll concentrations

observed with OC2M. Similarly, the strong decrease at high chloro-
phyll observed with some of the algorithms (OC2M, OC3M, and
QAA) could not be explained by an incorrect assumption. Quite sim-
ply, the case 1 relationships always increase monotonously with chlo-
rophyll and the changes in the quantum yield would have to be
unrealistically large and systematic to account for such departures.
This assessment was supported by the observation that correcting
the empirical algorithm for the effect of CDM reduced the biases. As-
sumptions 3 and 4 were much harder to dismiss as theoretical calcu-
lations have shown that at low chlorophyll concentrations: a) there is
a bias of~50% in the estimate of the fluorescence line height (Huot et
al., 2005), which would induce an underestimate of the radiance ob-
served (and not an overestimate as was the case for the flooring ob-
served with the empirical algorithms); and b) we were reaching the
prelaunch requirement for the noise equivalent radiance of the MODIS
sensor and the measurement might have simply been meaningless
(Babin et al., 1996; Letelier and Abbott, 1996). Point a cannot be
assessed with the present analyses. We attempted to address point b
in Appendix 2 and found that with the 4 km resolution Level-3 data
used in the present study, the limit of detection should be around 0.04
to 0.15 mg chl m−3.We thus suggest that data fromregionswith chloro-
phyll concentrations below approximately 0.1 mg chl m−3 be consid-
ered tentative. When averages are computed for a large number of
points, meaningful values may still, however, be obtained below this
limit, such as in Figs. 1 and 3.

Analyses such as the one presented in Table 1 highlight the potential
of using fluorescence emission to tune ocean color algorithms to re-
trieve chlorophyll or phytoplankton absorption. Everything else being
equal, an estimate of chlorophyll or phytoplankton absorption that ex-
plains more of the variability in the nFLH should be considered a better
algorithm to retrieve phytoplankton biomass. A similar suggestion was
also previouslymade by Behrenfeld et al. (2009). In this approach, there
is no need to assume any functional relationship between phytoplank-
ton absorption or biomass and fluorescence emission.

The χfluo algorithm we have presented here to retrieve the vari-
ability in the quantum yield of fluorescence was very different, and in

Fig. 7. Slices through the three dimensional lookup table representing the median values of nFLH (nFLHLUT) with respect to: EdPAR(0+); the maximum band ratio, which is an index of
phytoplankton biomass; and the ratio of Rrs(412) to Rrs(443), which is an index of CDOM absorption at a given phytoplankton biomass. In the algorithm, for each pixel this lookup
table is interpolated to obtain the median value for the remotely measured set of EdPAR(0+), the maximum band ratio, and Rrs(412) to Rrs(443). The measured nFLH value of a pixel is
then divided by the median from the LUT (see Eq. (4)).
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many ways superior, to that proposed by Huot et al. (2005), which in-
spired subsequent variations (Behrenfeld et al., 2009; Morrison and
Goodwin, 2010). In the present study, our algorithmwas based directly
on observations and did not make any assumptions about the average
global optical characteristics of the water as a function of remotely
sensed chlorophyll or potential biases in the measurement of Lf
(see Eq. (1)) by nFLH because they were all inherently accounted for.
Furthermore, we corrected as much as possible for the effects of CDM
on nFLH by using what we believed was one of the most accurate
methods based on our study. The algorithm was also more robust
with respect to calibration errors (as long as they remains stable) of
the sensor or possible biases in the algorithms and proxies for [chl],
aCDOM(443), and EdPAR(0+) because the LUT inherently accounted for
many of these biases. As long as the proxy was functionally related to
the “true” value, the LUT should have been able to account for the
biases. As an example, if an algorithm for [chl] retrieves on average
values that are two times too high over a certain range of [chl] this
would lead to quantum yields that are two times too low in that
range of [chl] using previous quantum yield algorithms. Such biases
are not present in the LUT approach developed here. This property,
stemming from the design of the algorithm, is also interesting from
the perspective of merging data from multiple sensors. Indeed, as
long as a satellite can provide robust proxies of [chl], aCDOM(443), and

EdPAR(0+) that are functionally related to those of MODIS, the resulting
fields of χfluo should be sufficiently similar for merging the data. This
was at least partially confirmed by comparing the LUTs based on the
MBR and GSM outputs (Fig. 8A and B). This said, we do not believe
that the algorithm presented by Huot et al. (2005) and subsequent im-
provements are fundamentally flawed from a theoretical point of view;
however, we think that the details of the implementations (including
the relationships for case 1 waters, the ocean color algorithms used to
retrieve [chl] or aφ, and potential measurement biases) may lead to
biases.

The apparent downside of the LUT-based algorithm was that it did
not provide quantum yields in absolute values. Although this is some-
what unfortunate because Sun-induced fluorescence theory allows
its calculation, comparison of the absolute quantum yield with other
measurements of the absolute quantum yield, apart from those taken
with radiometers in situ, has not been carried out to this day. Indeed,
absolute quantum yield measurements are almost never carried out in
the laboratory (though proxies have been obtained e.g. Cleveland and
Perry, 1987; Laney et al., 2005). Standard methods to measure variable
fluorescence in the lab, such as pulse amplitude modulation (PAM)
fluorometry or fast repetition rate (FRR) fluorometry, are not generally
interpreted in terms of absolute quantumyields (especially not apparent
quantum yields such as is the case when Sun-induced quantum yields

Fig. 8. Global distributions for the month of March 2007 of: A) variation in χfluo (see Eq. (4)); B) variation in χfluo when the GSM outputs were used for chlorophyll and CDMwere used
(instead of the MBR and the ratio of Rrs at 412 and 443 nm); C) quantum yield of fluorescence computed using the algorithm presented by Behrenfeld et al. (2009, their Eq. (A12)); D)
Φ-corrected OC3M chlorophyll estimates; F) EdPAR(0+) from the iPAR algorithm; and G) sea surface temperatures.
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aremeasuredHuot andBabin, 2010). In fact, not capturing the variability
caused by themean trend with trophic level could turn out to be an ad-
vantage as regionswith different trophic regimes canbe comparedmore
easily. Current interpretations (e.g. Behrenfeld et al., 2009;Morrison and
Goodwin, 2010) of thequantumyields aremore consistentwith theχfluo

product than with the results of an algorithm that could show changes
with trophic levels.

Several other limitations must be kept in mind when using this
algorithm. Because the algorithm corrects as much as possible for the
effect of EdPAR(0+) at the time of the overpass, and therefore indi-
rectly for the mean PAR irradiance received during the day, it is not
possible to study photocompensation mechanisms (e.g. Morrison and
Goodwin, 2010) without taking special care. Indeed, such an analysis
could be carried out, for example by fixing the PAR value to a constant
and studying the resulting variability in χfluo. The limits of estimates
of nFLH for case 2 waters have been well documented (Gilerson et al.,
2008; Ioannou et al., 2009) and we will not discuss them here, except
to say that the low quantum yields often observed near the coast and
in estuaries in Fig. 8 are likely the result of uncorrected biases in these
waters.

We worked with daily Level-3 data to develop our LUT and thus our
algorithm can be readily applied to obtain global distributions of χfluo

from existing products distributed by NASAwithout significant compu-
tational effort. The primary disadvantage of workingwith Level-3 prod-
ucts is that fluorescence specific bidirectional effects (Morel et al., 2002;
Park and Ruddick, 2005) could not be corrected. This could be a signif-
icant source of variability since the bidirectional correction currently
applied to themeasuredwater leaving radiance only corrects for elastic
scattering and Raman scattering (using tables from Morel et al., 2002)
and this does not correct appropriately the fluorescence emission. In-
cluding the viewing angle in the LUT (which would be applied during
the Level-2 processing) could, thus, further reduce the scatter. Another
disadvantagewas that we had toworkwith the fluorescence proxy that
was available, namely nFLH. Using a measure of fluorescence based on
radiances, instead of normalized water leaving radiances, may also
help to slightly reduce scatter in the data. Lastly, working with Level-3
products as distributed, we had to use above water incident irradiance
(EdPAR(0+)) as we cannot account for the Sun zenith angle to compute
the transmission at the air–sea interface. Since the main driver of the
underwater irradiance is EdPAR(0+) and the air–sea transmission is
largely affected (through the zenith angle of the Sun) by EdPAR(0+)
the effect of not accounting for the transmission through the interface
is likely small on the retrieved χfluo. Nevertheless, in the future, the
use of EdPAR(0−) would provide some reduction of the scatter. In any
case, it is very unlikely that these potential future improvements will
lead to a large change in the patterns observed but would most likely
slightly reduce the scatter in the resulting χfluo. The LUT approach
developed in this study allows the inclusion of other variables and
only requires recomputing the LUT, which could easily be done in an
operational setting.

6. Conclusions

Despite the availability of spaceborne Sun-induced fluorescence
data for more than a decade, very little insight into the functioning
of the ocean has been gained from these observations. The disinclina-
tion of the ocean color community to use algorithms estimating the
quantum yield of fluorescence is likely due to the possibility of biases
in these data. Despite these hurdles, two interesting contributions by
Behrenfeld et al. (2009) and Morrison and Goodwin (2010) have
identified iron limitation and “photocompensation” mechanisms re-
spectively as potential causes of variability in the signal that could
be exploited to study aspects of phytoplankton ecophysiology from
space. These studies have highlighted that identifying the biological
sources of variability in the quantum yield could indeed lead to
a very powerful tool to study the oceans from space. While more

validation is required to use Sun-induced fluorescence as a diagnostic
tool, the algorithmpresented in this study eliminates some of the biases
that were present in previous algorithms. On theoretical grounds, it is
an improvement over previous algorithms in the following regards:

1) it does not assume case 1 water relationships (as good as they
may be);

2) it accounts for the effect of variability in the CDM absorption on
a pixel-by-pixel basis as it affects, on average, the emission of
fluorescence;

3) it provides a more accurate representation of the mean effect of
incident irradiance on nFLH;

4) it accounts for any biases that may arise at low chlorophyll
concentration;

5) it accounts fully for the cross terms of phytoplankton absorption,
incident PAR irradiance, and CDM;

As such, it should provide more reliable estimates of variability in
the quantum yield, which is critical to interpreting its distribution
spatially, as well as its variability temporally.

Appendix 1. Calculating the impact of CDOM on Sun-induced
fluorescence emission

The fluorescence radiance just beneath the surface of the ocean is
given by Eq. (1). The impact of CDOM on most oceanic waters is
through its effect on the absorption of light at the surface and thus
the reduced or increased availability of light to phytoplankton and
consequently, fluorescence. This effect is expressed by the term K

τf
abs

which represents the attenuation of the light absorbed by phyto-
plankton over the region where 90% of the fluorescence radiance
originates. The attenuation of upwelling radiance in the fluorescence
band represented by the term af is, in principle, also affected by
CDOM; however, in most oceanic water this effect is negligible due
to the low absorption by CDOM near 683 nm relative to the absorp-
tion by water.

At a given chlorophyll concentration or phytoplankton absorption
the ocean contains an average CDOM (Morel, 2009; Morel and Gentili,
2009) and CDM (Siegel et al., 2005) concentration. If we assume that
the quantum yield to remains constant and we take the ratio (γCDOM)
of the fluorescence radiance (Eq. (1)) emitted with a given concentra-
tion of CDOM (variables with a superscript ΔCDOM) to the fluo-
rescence emitted with an average concentration (variables with an
overbar), we obtain Eq. (3). To model the average trends, the average
absorption of CDOM and detrital material at 400 nm as a function of
chlorophyll concentration has been obtained from Morel (2009) as

ay 400; chl½ �ð Þ ¼ 0:065 chl½ �0:63 A1

which can be extended spectrally by using an exponentially decreasing
function as

ay λ; chl½ �ð Þ ¼ 0:065 chl½ �0:63⋅e −S λ−400ð Þð Þ
: A2

where S is the exponential slope of the CDOM absorption, taken as
0.018 nm−1 here.

Using this information,we canmodify themean spectral downwelling
diffuse attenuation (Kd, m−1) coefficient given by Morel and Maritorena
(2001). To do so we use the coefficients for Kbio from (Morel et al.,
2007) as follows Kd=Kw+Kbio+ fCDOM⋅ay/μd where Kw is the diffuse
attenuation coefficient for water and Kbio the diffuse attenuation coeffi-
cient for chlorophyll and covarying matter, and fCDOM is a coefficient
equal to ΔCDOMay/ ay−1, where ΔCDOMay is the absorption of CDOM
when CDOM is not equal to the mean oceanic value (ay) for that chloro-
phyll concentration, hence fCDOM=0 represents the average value. Note
that the term Kbio, already accounts for the mean oceanic concentration
at a given chlorophyll concentration as such fCDOM represents a fractional
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increase or decrease relative to themean. Finally, theay=μd represents the
partial diffuse attenuation coefficient from the mean concentration of
CDOM in the ocean at a given chlorophyll concentration.

Using these relationships, we computed the spectral attenua-
tion coefficient as affected by CDOM absorption for 0.15, 0.55 and
1.25 mg chl m−3. Based on this diffuse attenuation coefficient and
the spectral absorption coefficient of phytoplankton provided by
Bricaud et al. (1995 with updated coefficients in 2004) we computed
the attenuation of spectral irradiance absorbed by phytoplankton
with depth. We then proceeded with the iterative computation de-
scribed in Huot et al. (2005) to compute Kτf

abs.
Using these Kτf

abs values as well as the appropriate af for each chlo-
rophyll concentration, we computed γCDOM. To provide estimates of
the maximum and minimum values for γCDOM we recomputed ay
using Eq. (A1) by changing the chlorophyll dependency from 0.63
to 0.56 and 0.7 and the value of ay at 1 m chl m−3 and 400 nm
from 0.065 m−1 to 0.078 and 0.052 m−1. Using these simulations, a
region representing the effect of CDOM was defined as the maximum
and minimum values of Eq. (3) for each CDOM absorption value and
is represented in Fig. 3 (and other similar figures) by the magenta
area.

Appendix 2. Limit of detection for MODIS

The limit of detection on the MODIS instrument in terms of fluo-
rescence line height (FLH) at 676.7 nm (Letelier and Abbott, 1996)
and radiance at 682 nm (Babin et al., 1996) was been evaluated be-
fore its launch. Working with the data available at the time regarding
the expected sensor characteristics (required signal to noise ratio),
top of atmosphere (TOA) radiance and quantum yield of fluores-
cence in surface waters, these studies suggested that MODIS would
be able to detect the top of the atmosphere FLH down to about
0.012 W m−2 sr−1 μm−1 (Letelier and Abbott, 1996) and the upwell-
ing radiance at 682 nm down to about 0.008 W m−2 sr−1 μm−1

(Babin et al., 1996). These values, once propagated below thewater sur-
face and comparedwith estimated emission by phytoplankton returned
detection limits of Sun-induced fluorescence from waters with chloro-
phyll concentrations of ~0.5 mg chl m−3 (Letelier and Abbott, 1996)
and 0.07 mg chl m−3 (Babin et al., 1996).

Recomputing the TOA detection limit using the actual MODIS
characteristics (cf. Franz et al., 2006) and a computation identical to
that used by Letelier and Abbott (1996), leads to a detection limit
for FLH at the TOA of 0.014 W m−2 sr−1 μm−1. Despite the slightly
higher signal to noise values used here, the result is slightly above
that computed by Letelier and Abbott (1996), because the typical
TOA radiance used is higher. To find the correspondance between
this TOA fluorescence radiance and biomass in terms of chlorophyll
is more difficult. For this calculation, we assume that the TOA fluores-
cence radiance is equal to the previously distributed FLH product
used in Huot et al. (2005), that is, TOA radiance corrected for Rayleigh
scattering losses. We use, as a benchmark, the simple relationship de-
rived by Gower et al. (their Eq. (4)), which, once multiplied by 1.65,
was shown to match very well the relationship between chlorophyll
and FLH for the region west of Central America (2005). Using this re-
lationship, we find a chlorophyll concentration of 0.073 mg chl m−3

as the limit of detection (see Fig. A1). A factor of at least 2 is clearly
possible in this estimate depending on the region (Huot et al., 2005,
compare their Fig. 13 vs Fig. 9) and dispersion within a region
(upper and lower thin lines in Fig. A1). Therefore, we could say that
the limit of detection is anywhere between 0.035 and 0.14 mg chl m−3.
However, it is impossible to know, for a given pixel, what this limit is
based solely on the chlorophyll estimate (it depends, amongst other
things, on the physiology of the phytoplankton observed). Therefore,
as a first semi-quantitative delineation, we should consider any data
below ~0.15 mg chl m−3 as suspicious at 1 km resolution.

A different approach to assess the limit of detection is studying the
variability in nFLH as a function of the nFLH itself. In order to do this,
we computed the standard deviation (std(nFLH25)) and the mean
(mean(nFLH25)) of 273,383 groups of 25 adjacent pixels taken from
16 level 2 dataset (distributed on the ocean color website) selected
to represent different regions and trophic state of the ocean. We plot-
ted the mean over the standard deviation of this dataset as a function
of chlorophyll and nFLH (Fig. A2). The variability seen in these figures
is originates from the spatial variability in the fluorescence signal
(including that caused by the algorithm) and the sensor noise. At high
nFLH values, the sensor noise should be negligible and the variability
minimum as is observed in Fig. A2 (mean/standard deviation~10). As
the nFLH decreases, the influence of sensor noise increases, and this is
reflected in a rapid decrease in the signal to noise ratio (Fig. A2). If we

Fig. A1. Relationship between FLH and chlorophyll concentration (thick black line).
Horizontal lines represents the calculated minimum signal of detection of the FLH for
1, 4, 9 and 25pixels (1 km2, 4 km2, 9 km2 and 25 km2), the vertical dashed line represents
an estimate of the chlorophyll concentration at which this FLH would be obtained.
The thin black lines parallel to the thick black line represent a factor of two greater
(upper line) and lower (lower line) quantum yield of fluorescence.

Fig. A2. Density plot of the ratio of the mean to the standard deviation of groups of 25
adjacent pixels (a measure of the signal to noise in the data) as a function of the mean
of the groups. The continuous line with dots is a line representing the median
trendline (see Fig. 1 and accompanying text). The vertical dashed line is the nFLH
value (0.003 mW cm−2 sr−1 μm−1) at which 50% of the points have a mean to
standard deviation ratio of 2 (horizontal dashed line).
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consider, for example, that a ratio of the signal to noise greater than 2 is
required for at least 50% of the points,we find that theminimum nFLH is
around 0.003 mW cm−2 sr−1 μm−1 (which corresponds very roughly
to 0.1 mg chl m−3, see Fig. 1). Such a limit, in terms of nFLH and based
on themeasurednFLH value provides amore accuratewayof separating
points that are above the detection limit. A similar analysis in terms of
FLH would probably provide an even more reliable estimate of the
lower limit of detection (i.e. not influenced by the incident irradiance),
however, since nFLH are presently distributed by NASA, we carried out
the analysis on nFLH data.
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